Stationarity and Stability of Autoregressive Neural Network Processes

نویسندگان

  • Friedrich Leisch
  • Adrian Trapletti
  • Kurt Hornik
چکیده

We analyze the asymptotic behavior of autoregressive neural network (AR-NN) processes using techniques from Markov chains and non-linear time series analysis. It is shown that standard AR-NNs without shortcut connections are asymptotically stationary. If linear shortcut connections are allowed, only the shortcut weights determine whether the overall system is stationary, hence standard conditions for linear AR processes can be used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ergodicity and Stationarity of the ARMA(1,1) Recurrent Neural Network Process

In this note we consider the autoregressive moving average recurrent neural network ARMA-NN(1; 1) process. We show that in contrast to the pure autoregressive process simple ARMA-NN processes exist which are not irreducible. We prove that the controllability of the linear part of the process is sufficient for irreducibility. For the irreducible process essentially the shortcut weight correspond...

متن کامل

Economic growth: Theory and numerical solution methods Description of contents

An overview of some statistical concepts using simple time series models: Stationarity, mean reversion, autocorrelation, impulse responses, autoregressive processes, stability. A section on simulating white noise, random walk, autoregressive processes comments on results in …le Simple_simul.xls. Lack of stationarity is illustrated, and impulse response functions are computed for processes with ...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

A Nonlinear Autoregressive Model with Exogenous Variables Neural Network for Stock Market Timing: The Candlestick Technical Analysis

In this paper, the nonlinear autoregressive model with exogenous variables as a new neural network is used for timing of the stock markets on the basis of the technical analysis of Japanese Candlestick. In this model, the “nonlinear autoregressive model with exogenous variables” is an analyzer. For a more reliable comparison, here (like the literature) two approaches of  Raw-based and Signal-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998